All functions

annotate_cc_list()

Call AnnotationGenerator on a list of data

AnnotationGenerator()

generate case control annotations for hit data based on library annotation file.

AVARDA_RCPGenerator()

calculate RCP for AVARDA data

compute_rcp_list()

Calculate relative control percentile statistic for a list of data.

compute_stats_list()

calculate statistics for list of data

config_case_control()

setup configurations for this case control study

define_plan_case_control()

Setup drake plan for case control report targetse.

filter_hits()

filter hits data to prepare for RCPGenerator

filter_hits_list()

filter hits for data list.

gather_sample_list()

Return a list of subsetinput data based on specified data types, file paths, and sample names.

generate_clustergram()

generates clustergram of hits

phipcc

phipcc: case control reports for PhIP-Seq.

plot1_hitfreq()

Plot hit frequency vs median hit score of cases

plot2_hitscore()

second plot

plot3_pval()

third plot

prepare_AVARDA_candidate_table()

prepare_AVARDA_candidate_table

prepare_AVARDA_candidate_table_html()

prepare_AVARDA_candidate_table_html

prepare_AVARDA_clustergram_data()

prepare_AVARDA_clustergram_data

prepare_candidate_table()

candidate antigen generator script

prepare_candidate_table_html()

Add kable html stying to candidate table.

prepare_clustergram_data()

Process hit data for hierarchical clustering.

prepare_epitope_clustergram_data()

Collapse hit clustergram based on cross-reactive peptide groups defined by epitopefindr.

RCPGenerator()

RCPGenerator calculates RCP, Relative Control Percentile, a case-control statistic describing the percentile from 0.0 to 1.0 of one score against that of a control population. For example, if a control population consisted of three scores, 4.1, 5.0, 6.8, and 10.1, then a score of 5.0 would be assigned an RCP of 0.25, because 5.0 is higher than 25 population. In this implementation, ties count as losses.

read_AVARDA()

read_AVARDA

render_from_template()

Pass parameters to R markdown case control template and knit html output file.

StatsGenerator()

performs a first round of calculations on the data such as hit frequency and Fisher's test. These calculations will be used in subsequent graphing.

StatsGenerator_AVARDA()

generate statistics from AVARDA output

subset_AVARDA()

subsetAVARDA

subset_data()

subset data to only contain rows that match a template.